Linearity & Conjugate Properties

Time-Frequency Duality of Fourier Transform

 Near symmetry between direct and inverse Fourier transforms (Year 1 Comms Lecture 5):

Duality Property

• If $x(t) \Longleftrightarrow \overline{X}(\omega)$

then $X(t) \iff 2\pi x(-\omega)$

• Proof: From definition of inverse FT (previous slide), we get

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(u) e^{jut} du$$

Hence

$$2\pi x(-t) = \int_{-\infty}^{\infty} X(u) e^{-jut} \, du$$

• Change t to ω yield, and use definition of forward FT, we get:

$$2\pi x(-\omega) \iff X(t)$$

Duality Property Example

Time-Shifting Property

- If $x(t) \iff X(\omega)$ then $x(t - t_0) \iff X(\omega)e^{-j\omega t_0}$
- Consider a sinusoidal wave, time shifted:

• Obvious that phase shift increases with frequency (To is constant).

L7.3 p705

E2.5 Signals & Linear Systems

Lecture 11 Slide 7

Scaling Property

• If $x(t) \iff X(\omega)$ then for any real constant a

ta,
$$x(at) \iff \frac{1}{|a|} X$$

 $\left(\frac{\omega}{a}\right)$

• That is, compression of a signal in time results in spectral expansion, and vice versa.

Time-Shifting Example

Frequency-Shifting Property

- If $x(t) \iff X(\omega)$ then $x(t)e^{j\omega_0 t} \iff X(\omega - \omega_0)$
- Multiply a signal by $e^{j\omega_0 t}$ shifts the spectrum of the signal by ω_0 .
- In practice, frequency shifting (or amplitude modulation) is achieved by multiplying x(t) by a sinusoid:

Convolution Properties

- If $x_1(t) \iff X_1(\omega)$ and $x_2(t) \iff X_2(\omega)$ then $x_1(t) * x_2(t) \iff X_1(\omega)X_2(\omega) \quad \text{(time convolution)}$ $x_1(t)x_2(t) \iff \frac{1}{2\pi}X_1(\omega) * X_2(\omega) \quad \text{(frequency convolution)}$
- Let $H(\omega)$ be the Fourier transform of the unit impulse response h(t), i.e. $h(t) \iff H(\omega)$
- Applying the time-convolution property to y(t)=x(t) * h(t), we get:

$$Y(\omega) = X(\omega)H(\omega)$$

• That is: the Fourier Transform of the system impulse response is the system Frequency Response

L7.3 p712

PYKC 20-Feb-11

E2.5 Signals & Linear Systems

Lecture 11 Slide 11

PYKC 20-Feb-11

Frequency-Shifting Example

• Find and sketch the Fourier transform of the signal $x(t)\cos 10t$ where x(t) = rect(t/4).

 $x(t)\cos 10t \iff \frac{1}{2}[X(\omega+10) + X(\omega-10)]$

 $x(t) \cos 10t \iff 2 \sin \left[2(\omega + 10)\right] + 2 \sin \left[2(\omega - 10)\right]$

Proof of the Time Convolution Properties

- By definition $\mathcal{F}|x_1(t) * x_2(t)| = \int_{-\infty}^{\infty} e^{-j\omega t} \left[\int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau \right] dt$ $= \int_{-\infty}^{\infty} x_1(\tau) \left[\int_{-\infty}^{\infty} e^{-j\omega t} x_2(t-\tau) dt \right] d\tau$
- The inner integral is Fourier transform of x₂(t-τ), therefore we can use time-shift property and express this as X₂(ω) e^{-jωτ}.

$$\mathcal{F}[x_1(t) * x_2(t)] = \int_{-\infty}^{\infty} x_1(\tau) e^{-j\omega\tau} X_2(\omega) d\tau$$
$$= X_2(\omega) \int_{-\infty}^{\infty} x_1(\tau) e^{-j\omega\tau} d\tau$$

=

$$X_1(\omega)X_2(\omega)$$

Frequency Convolution Example

• Find the spectrum of $x(t)\cos 10t$ where x(t) = rect(t/4). using convolution property. $X(\omega)$ x(t)-2 2 1---Χ cos 10t 1/2 1/2 ٨ 10 -10 $x(t) \cos 10t$ 0 PYKC 20-Feb-11 E2.5 Signals & Linear Systems Lecture 11 Slide 13

Time Differentiation Property

• If $x(t) \iff X(\omega)$

then

$$\frac{dx}{dt} \iff j\omega X(\omega)$$
 (time differentiation)

and
$$\int_{-\infty}^{t} x(\tau) d\tau \iff \frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$$
 (time integration)

• Compare with Lec 6/17, Time-differentiation property of Laplace transform:

x	$(t) \Longleftrightarrow X(s)$
d	$\frac{x}{t} \iff sX(s) - x(0^{-})$

```
D. (( 0 00 5 )
```

PYKC 20-Feb-11

E2.5 Signals & Linear Systems

L7.3 p714 Lecture 11 Slide 14

Summary of Fourier Transform Operations (1)

Operation	<i>x</i> (<i>t</i>)	X(w)
Scalar multiplication	kx(t)	$kX(\omega)$
Addition	$x_1(t) + x_2(t)$	$X_1(\omega) + X_2(\omega)$
Conjugation	$x^*(t)$	$X^*(-\omega)$
Duality	X(t)	$2\pi x(-\omega)$
Scaling (a real)	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Time shifting	$x(t-t_0)$	$X(\omega)e^{-j\omega t_0}$
Frequency shifting (ω_0 real)	$x(t)e^{j\omega_0 t}$	$X(\omega-\omega_0)$

Summary of Fourier Transform Operations (2)

Operation	<i>x(t)</i>	X(w)
Time convolution	$x_1(t) \ast x_2(t)$	$X_1(\omega)X_2(\omega)$
Frequency convolution	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega) * X_2(\omega)$
Time differentiation	$\frac{d^n x}{dt^n}$	$(j\omega)^n X(\omega)$
Time integration	$\int_{-\infty}^{t} x(u) du$	$\frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$

PYKC 20-Feb-11

E2.5 Signals & Linear Systems

L7.3 p715 Lecture 11 Slide 15

PYKC 20-Feb-11